Назад
ГДЗ Геометрія 8 клас Мерзляк (2025)
.jpg?1760724246)
Реклама:
б) Нехай AB = a, AD = b. За умовою AK = KB = a/2, AN = ND = b/2.
SABCD = AB • AD • sin∠A, S = ab • sin∠A.
За властивістю кутів паралелограма маємо: ∠A + ∠D = 180°, ∠B = ∠D, ∠D = 180° – ∠A, sin∠D = sin(180° – ∠A) = sin∠A, sin∠B = sin∠D.
S∆AKN = 1/2AK • AN • sin∠A; S∆AKN = 1/2 • a/2 • b/2 • sin∠A = ab/8 • sin∠A;
S∆BKC = 1/2KB • BC • sin∠B; S∆BKC = 1/2 • a/2 • b • sin∠A = ab/4 • sin∠A;
S∆NDC = 1/2ND • DC • sin∠D; S∆NDC = 1/2 • b/2 • a • sin∠A = ab/4 • sin∠A;
SABCD = S∆AKN + S∆KBC + S∆ADC + SKNC;
S∆KNC = SABCD – (SAKN + S∆KBC + S∆ADC);
S∆KNC = S – (ab/8sin∠A + ab/4sin∠A + ab/4sin∠A) = S – (ab/8sin∠A + ab^(\4)/2sin∠A) = S – (ab/8sin∠A + 4ab/8sin∠A) = S – 5ab/8sin∠A = S\8 – 5/8S = (8S-5S)/8 = 3S/8.
Відповідь: S∆KNC = 3S/8.
SABCD = AB • AD • sin∠A, S = ab • sin∠A.
За властивістю кутів паралелограма маємо: ∠A + ∠D = 180°, ∠B = ∠D, ∠D = 180° – ∠A, sin∠D = sin(180° – ∠A) = sin∠A, sin∠B = sin∠D.
S∆AKN = 1/2AK • AN • sin∠A; S∆AKN = 1/2 • a/2 • b/2 • sin∠A = ab/8 • sin∠A;
S∆BKC = 1/2KB • BC • sin∠B; S∆BKC = 1/2 • a/2 • b • sin∠A = ab/4 • sin∠A;
S∆NDC = 1/2ND • DC • sin∠D; S∆NDC = 1/2 • b/2 • a • sin∠A = ab/4 • sin∠A;
SABCD = S∆AKN + S∆KBC + S∆ADC + SKNC;
S∆KNC = SABCD – (SAKN + S∆KBC + S∆ADC);
S∆KNC = S – (ab/8sin∠A + ab/4sin∠A + ab/4sin∠A) = S – (ab/8sin∠A + ab^(\4)/2sin∠A) = S – (ab/8sin∠A + 4ab/8sin∠A) = S – 5ab/8sin∠A = S\8 – 5/8S = (8S-5S)/8 = 3S/8.
Відповідь: S∆KNC = 3S/8.






