Назад

ГДЗ Геометрія 7 клас Мерзляк (2024)

ГДЗ Геометрія 7 клас Мерзляк (2024)
Реклама:

На рисунку 370 ∠A = 46°, ∠ACB = 68°, ∠DEC = 120°. Знайдіть кути трикутників EFC і DBE.

Дано: ∠A = 46°; ∠ACB = 68°; ∠DEC = 120°. Знайти: кути ∆EFC і ∆DBE, Розв’язання: Розглянемо ∆АВС. За теоремою про суму кутів трикутника маємо: ∠A + ∠B + ∠ACE = 180°. ∠B = 180° – (46° + 68°) = 180° – 114° = 66°. ∠BED та ∠DEC — суміжні. За теоремою про суміжні кути маємо: ∠BED + ∠DEC = 180°. ∠BED = 180° – 120° = 60°. Розглянемо ∆DBE. За теоремою про суму кутів трикутника маємо: ∠B + ∠BDE + ∠BED = 180°. ∠BDE = 180° – (66° + 60°) = 180° – 126° = 54°. ∠BDE і ∠EDA — суміжні. За теоремою про суміжні кути маємо: ∠BDE + ∠EDA = 180°. ∠EDA = 180° – 54° = 126°. Розглянемо ∆FDA. За теоремою про суму кутів трикутника маємо: ∠A + ∠F + ∠ADE = 180°. ∠F = 180° – (46° + 126°) = 180° – 172° = = 8°. Розглянемо ∆ECF. ∠ECF і ∠ECA — суміжні. Тобто ∠ECF + ∠ECA = 180°. ∠ECF = 180° – 68° = 112°. ∠CEF + ∠F + ∠ECF = 180°. ∠CEF = 180° – (8° + 112°) = 180° – 120° = 60°. Відповідь: кути ∆EFC: 60°; 8°; 112°; кути ∆DBE: 66°; 60°; 54°.