Назад

ГДЗ Геометрія 8 клас Мерзляк (2025)

§ 1. Чотирикутники
ГДЗ Геометрія 8 клас Мерзляк (2025)
Реклама:

Кут між висотою BH паралелограма ABCD і бісектрисою BM кута ABC дорівнює 24°. Знайдіть кути паралелограма.

Нехай дано паралелограм АВСD, ВН — висота, ВМ — бісектриса ∠АВС, ∠НВМ = 24°.
Знайдемо ∠А, ∠В, ∠С, ∠D.
Розглянемо ∆ВНМ: ∠Н = 90°, ∠НВМ = 24°, тоді ∠BMH = 180° – (90° + 24°) = 180° – 114° = 66°.
∠CBM = ∠AMB = 66° (як внутрішні різносторонні при ВС ∥ AD і січній ВМ).
∠MBC = ∠MBA = 66° (ВМ — бісектриса ∠ABC). ∠АВС = 2 • 66° = 132°.
∠ABC = ∠D = 132° (як протилежні кути паралелограма). ∠A + ∠ABC = 180° (як сусідні кути паралелограма).
∠A = 180° – 132° = 48°. ∠A = ∠C = 48° (як протилежні кути паралелограма).
Відповідь: ∠A = ∠C = 48°, ∠B = ∠D = 132°.