Назад
ГДЗ Геометрія 8 клас Істер (2025)
Розділ 1. Чотирикутники

Реклама:
У прямокутній трапеції гострий кут і кут, який утворює менша діагональ з меншою основою, дорівнюють 60°. Знайдіть відношення основ трапеції.
1) Нехай ABCD — прямокутна трапеція; ∠ВСА = ∠D = 60°.
2) Позначимо BC = а.
3) У ∆ABC: ∠BAC = 90° – 60° = 30°.
4) За властивістю катета, що лежить проти кута 30°, маємо AC = 2а.
5) ∠CAD = 90° – ∠BAC = 90° – 30° = 60°.
6) У ∆ACD: ∠ACD = 180° – 2 • 60° = 60°. Тому ∆ACD — рівносторонній і AD = AC = 2а.
7) Отже, AD : BC = 2а : а = 2 : 1.
Відповідь: 2 : 1.