Назад
ГДЗ Геометрія 8 клас Бевз (2025)
Розділ 2. Подібність трикутників

Реклама:
530. У ∆ABC вписано прямокутний рівнобедрений ∆MKN так, що гіпотенуза MN ∥ AC, а K ∈ AC (мал.9.24). Знайди MN, якщо AC = 30 см, а висота BH = 10 см.
Нехай ∆MNK (∠N = 90°; NM = NK) вписано в ∆АВС.
MN ∥ AC, K ∈ AC. AC = ЗО см; BH = 10 см.
MN ∥ AC, тому ∆MBN ~ ∆ABC.
MN/BP = AC/BH; MN/BP = 30/10 = 3.
BP : PH = 1 : 2. FK ∥ PH. FK = PH.
∆FKN. ∠FNK = 45°; ∠F = 90°; ∠FKN = 45°.
FN = FK; FK = 2/3BH = 2/3 • 10 = 20/3 = 62/3; MN = 2FN = 2 • 20/3 = 40/3 = 131/3.
Відповідь: 131/3 см.






