Назад
ГДЗ Математика 7 клас Істер (2024)
4. ВЗАЄМНЕ РОЗМІЩЕННЯ ПРЯМИХ
Прямі а і b — паралельні, прямі b і с також паралельні. Пряма
l перетинає пряму а. Доведіть, що пряма перетинає прямі b і с.
За умовою a ∥ b і b ∥ с. Нехай прямі а і l перетинаються у точці М. Тоді через точку M проходять дві прямі a i l, паралельні прямій b. Це суперечить аксіомі паралельності прямих. Наше припущення хибне. Прямі b і l перетинаються. Аналогічно, виходячи з того, що b ∥ с і прямі b i l перетинаються, можна довести,
що прямі с і l перетинаються також.